If it's not what You are looking for type in the equation solver your own equation and let us solve it.
j^2+6j+8=0
a = 1; b = 6; c = +8;
Δ = b2-4ac
Δ = 62-4·1·8
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2}{2*1}=\frac{-8}{2} =-4 $$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2}{2*1}=\frac{-4}{2} =-2 $
| 15t+5=3t+17 | | x+44=2x-4 | | 9x-41=29 | | x+16=2x-34 | | 3(d-2)/9+5=7 | | (9^2x)=12 | | x+16=x-17 | | 5x-12=3x+40 | | 18x^2=72x | | (3^x)=243 | | -2x+4x=-26+1 | | x^2+2x+18=-2x-11 | | a-1+1=a | | (4)(4+x)=(3)(3+21) | | b÷3.3+5=15 | | 1/3(x+3)=28 | | 3x-8=23- | | x^2+31x=11x-36 | | x+2-3=13 | | 2(3x+3)=4(1-3x) | | 1-3n=n-3 | | 5p=8p-11 | | 3x+20+2x+13=9x+5 | | x3+263=x13-7 | | 1/4(f+5)=8 | | v/4-11=3 | | 2x+4+6x+3+7x+8=180 | | 1x+3=5x+4 | | 5+12x=3+15x | | 126=-3(5r | | 7x-40=-4x+15 | | 2(x+$2.60)=$16.40 |